A Hierarchical Variational Bayesian Approximation Approach in Acoustic Imaging

نویسندگان

  • Ning Chu
  • Ali Mohammad-Djafari
  • Nicolas Gac
  • José Picheral
چکیده

Acoustic imaging is a powerful technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. But it inevitably confronts a very ill-posed inverse problem which causes unexpected solution uncertainty. Recently, the Bayesian inference methods using sparse priors have been effectively investigated. In this paper, we propose to use a hierarchical variational Bayesian approximation for robust acoustic imaging. And we explore the Student-t priors with heavy tails to enforce source sparsity, and to model nonGaussian noise respectively. Compared to conventional methods, the proposed approach can achieve the higher spatial resolution and wider dynamic range of source powers for real data from automobile wind tunnel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The variational Laplace approach to approximate Bayesian inference

Variational approaches to approximate Bayesian inference provide very efficient means of performing parameter estimation and model selection. Among these, so-called variational-Laplace or VL schemes rely on Gaussian approximations to posterior densities on model parameters. In this note, we review the main variants of VL approaches, that follow from considering nonlinear models of continuous an...

متن کامل

Bayesian Sparsity for Intractable Distributions

Bayesian approaches for single-variable and group-structured sparsity outperform L1 regularization, but are challenging to apply to large, potentially intractable models. Here we show how noncentered parameterizations, a common trick for improving the efficiency of exact inference in hierarchical models, can similarly improve the accuracy of variational approximations. We develop this with two ...

متن کامل

Stochastic Complexities of Gaussian Mixtures in Variational Bayesian Approximation

Bayesian learning has been widely used and proved to be effective in many data modeling problems. However, computations involved in it require huge costs and generally cannot be performed exactly. The variational Bayesian approach, proposed as an approximation of Bayesian learning, has provided computational tractability and good generalization performance in many applications. The properties a...

متن کامل

Bayesian and variational Bayesian approaches for flows in heterogeneous random media

In this paper, we study porous media flows in heterogeneous stochastic media. We propose an efficient forward simulation technique that is tailored for variational Bayesian inversion. As a starting point, the proposed forward simulation technique decomposes the solution into the sum of separable functions (with respect to randomness and the space), where each term is calculated based on a varia...

متن کامل

Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014